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Research in contact mechanics is reviewed, mainly based on result determined at the Institute I3 of Mechanics in the lhchnical 
University of Munich. Interest in such problems arise in the 1960s in relation to statics and elastomechanica. Most of the 
mathematical tools were developed and used in those fields. As a result of increasing pressure from the practical side concerning 
vibrations and noise related to contract processes, methods of multibody dynamics with unilateral constraints have been elaborated. 
Q 2001 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

Contact phenomena, including bilateral and unilateral ones, often arise in dynamical systems. Walking, 
grasping and climbing are typically unilateral processes; the operation of machines and mechanisms 
includes a large variety of unilateral behaviour. From this the need arises to extend multibody theory 
by analysing contact phenomena. 

All contact processes have some characteristic features in common. If a contact is closed, the motion 
changes from slip to stick, which leads to some additional constraints generating constraint forces. We 
then call the contact active, otherwise it is passive. Obviously transitions in such contacts depend on 
the dynamics of the system under consideration. The beginning of such a contact is indicated by 
kinematical quantities like relative distances or relative velocities and the end indicated by kinetic 
quantities like the change in normal forces or friction forces. This serves as a basis for the following 
mathematical formulations. 

A large variety of possibilities exists in modelling local contact physics, from Newton’s Poisson’s and 
Coulomb’s laws to the discretization of the local behaviour by the FE- or BE-methods. However, 
simulations of large dynamical systems require compact contact laws. Therefore, we shall concentrate 
on the first type of laws which, despite their simple structure, are still able to describe a large range of 
applications realistically. 

The literature covers aspects like contact laws, PEM and BEM analysis contact statics, contact 
dynamics and a large body of various applications, (see for example, [ 11). As regards multibody systems 
with multiple unilateral contacts, most of the mathematical fundamentals, though initially regarding 
static problems only, were laid down by European scientists. The first investigations were carried out 
by Moreau and his school [2] and future time been developed considerably [3]. Moreau introduced 
convex analysis into multibody dynamics and reformulated the classical equations of motion in terms 
of measure differential inclusions in order to cover both, impact free motion and shocks, as they occur 
in frictional contact problems. 

Powerful methods for static and dynamical problems of contact mechanics were developed in [4,5]. 
Panagiotopoulos in particular established a general theory of unilateral problems in mechanics [4]. 
Liitstedt developed an advanced index-two-type integration algorithm for planar contact problems in 
rigid-body systems [5]. The Swedish school in this field has continued with remarkable results by 
Klarbring, who focuses his work on problems of FEM- and BEM- modelling [6]. Russian scientists have 
developed [7, 81 methods for non-smooth transformations of variables, which provide regularization 
in systems with impacts. 

At the Institute B of Mechanics in the Technical University of Munich research has been carried out 
in this field for more than ten years, which is mostly summarized in [9]. Some more recent results on 
nonlinear complementarity problems may be found in [lo]. As the Institute B of Mechanics is one of 
engineering mechanics, most of the research work deals with transferring the rigorous mathematical 
fundamentals to an engineering and application-friendly level. 

tPrikl. Mat. Mekh. Vol. 64, No. 5, pp. 805-816,2000. 
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2. THE EVOLUTION OF THE THEORY 

In the following we present some cornerstones in the evolution of dynamic contact theory. 

1. The woodpecker toy. The first example with structure-variant properties, which was analysed at the 
institute, was a woodpecker toy which operates by self-excited vibrations [ll]. Figure 1 shows a 
mechanical model of the toy and its operating principle. Here, m, and J, are the mass and central 
moment of inertia of the sleeve, and m, and J, are the corresponding quantities of the woodpecker. 
The angles between the vertical and the axes of the sleeve and the woodpecker are denoted by qM and 
(ps. They take values ‘pkl and ‘pkz, respectively, when the sleeve or the beak touches the pole. At these 
values the constraints are switched on and off. 

Self-exited oscillations of the woodpecker are caused by the presence of some energy source ST, here 
gravitation. In the absence of contact events, they are described by the functions included in VI. The 
contact events themselves act as switching conditions initiated by the sleeve as the main switch SS, and 
the beak as an auxiliary switch SB, not necessarily needed for the toy to work These switches control 
the energy transfer from gravitational energy as the energy source ES into kinetic energy in the form 
of linear and angular motion, as well as into strain energy stored in the spring. The terms ri denote 
different types of feedback acting in the system, such as the switching on and off of unilateral constraints 
(ri, Q), energy transfer by impacts (Q), and the dynamical couplings between the coordinates r4. 

The theory employed in 1984 was at that time incomplete because no reasonable concept for impacts 
with friction was available. Friction was therefore included empirically. The results a great very well 
with measurements. 

In subsequently an impact-with-friction theory appeared [12, 131. Its application to the woodpecker 
example confirms the simpler theory while at the same time improving the friction model. Figure 2 shows 
some results in the form of phase portraits [12]. The data used for the woodpecker may be attained 
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from [9]. The main phases of the motion are (Fig. 2): l-2 sliding, 2 - loss of contact, 2-3 - free fall 
with high-frequency oscillation; (73 Hz), 3 - inelastic impact of the upper edge of the sleeve, 4 -beak 
impact, 5-6 -free fall downward, 6-7 - transition to sleeve sticking and self-locking, 7-l -woodpecker 
angular motion with a low-frequency oscillation of around 9 Hz, which has also been confirmed by 
measurements. 

2. Gear rattling. Gear rattling is a noise problem which occurs in gear trains not under load [14]. 
Examples are change-over gears or gear-driven balancers. Figure 3 illustrates a five-stage gear 
configuration where the drive shaft AS moves the countershaft CS, and according to the switched gear, 
the countershaft drives the main shaft ES. All gear wheels mesh. Switching is performed by synchronizers 
connecting the appropriate wheel with the main shaft. The wheel is loaded and all other wheels are 
not under load and may rattle due to backlash in the mesh of the gears. The drive shaft is excited by 
the torsional vibrations of the drive system, which are more or less harmonic. These excitations are 
transferred to the countershaft where they produce rattling in the loose gear wheels. Figure 3 shows 
the case with the fourth stage switched, which for this type of gearbox results in a direct connection of 
the drive and main shafts. The countershaft and all gear wheels are not under load. The harmonic 
excitation leads to an impact driven vibration of the countershaft (below on the left) and, for example, 
in the fifth gear, to chaotic vibration of the fifth gear wheel (below on the right) [15]. 

An excellent relative measure for the noise generated by gear rattling can be achieved by summing 
up all impact impulses AN and introducing the noise intensity cX 1 AN I. Many applications to real gears 
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confirm that this measure describes all parameter dependence correctly. Figure 4 shows two examples 
for the change-over-gears of a pick-up truck (1) and a higher category medium-class car (2). Only one 
measurement point has been considered for choosing the proportionality factor c between the measured 
noise intensity (solid curves) and the calculated noise intensity (dotted curves). 

3. Turbine blade dumper. The two examples of the woodpecker toy and gear rattling only demonstrate 
impact theory, supplemented by friction. The operation of a turbine blade damper is entirely based on 
stick-slip processes, which was at that time a step in a new research direction [16,17]. 

Turbine blade dampers are parabolic sheet steel devices, often used in gas turbines to damp the blade 
vibrations by relative motion through dry friction. Figure 5 shows a typical configuration. It consists of 
two platforms 2 with masses ml and m3, each carrying a turbine blade 1 with mass m2 and m4, respectively. 
The platforms are separated by a frictional damper 3 of mass m5 and moment of inertia Js. The 
displacements of the platforms and the turbine blades are described by the coordinates ql, q2, q3 and 
q4. The unconstrained damper has two translational degrees of freedom @j and q7 and a rotational one 
q5. The constant radial force Fz represents the centrifugal force and presses the dampers against the 
oblique planes of the platforms. The blades are excited approximately harmonically by gas-dynamic 
forces F2(r) and Ii&). The elastic and dissipative properties are modelled by four pairs of springs and 
dashpots ci and db 

For such a model the following motions are possible: 
sliding at both contact points Ki and K2 (5 DOF); 
sliding at K1 and stiction at K2 (4 DOF); 
stiction at Ki and sliding at K2 (4 DOF); 
stiction at Ki and K2 (3 DOF). 
Stiction means for the 4 DOF case rolling without sliding, for the 3 DOF case a reduction of the 

coordinates (ql, q3, q5) to 1 DOE For each configuration a set of equations of motion can be established, 
which describe the motion as long as no transition occurs. In the case of a blade damper these transitions 
are typical of stick-slip behaviour. 

Transitions from sliding to stiction occur when the relative tangential velocity at one of the points of 
contact becomes zero, and at the same time the static friction force must be larger than the tangential 
constraint force. 

Transition from stiction to sliding occurs when the tangential constraint force becomes equal to the 
static friction force, and at the same time the tangential acceleration is non-zero. 

After each transition event the appropriate set of equations of motion must be selected to describe 
the further behaviour of the system up to the next transition [16]. 

Figure 6 shows the dependence of the excitation force F~Q (in Newtons) on the frequencyj& (in Hertz) 
for three different values of the centrifugal force Fz and for a platform angle y = 50”. The amplitude 
of the exciting force F24 must be increased for larger centrifugal forces Fz. The very small FN values 
for an excitation frequency of 61 Hz can be explained in the following way. The value of& = 61 Hz 
corresponds to the natural frequency of the blocked-damper system. This means that an excitation at 

Fig. 5 
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this frequency leads to large oscillation amplitudes of the blades and as a consequence to a considerable 
reduction of stiction. Therefore, the damper devices move from stick to slip when excited by a force 
of small amplitude. 

4. Landing impact of an aerophe. The landing impact of an elastic aeroplane is governed by the 
configuration of the aeroplane and its elasticity and by the main and nose under carriages. The practical 
example of a landing aeroplane was the first one where the different sets of equations of motion could 
not be written down explicitly, at least without considerable effort, but where some theoretical algorithm 
had to be established which enable the appropriate equations to be shown automatically [l&$19]. The 
internal structure of the undercarriage systems leads to impacts and to stick-slip phenomena, which 
influence the landing dynamics significantly. 

A plane elastic model was established [9] for the following bodies (see Fig. 7): (1) and elastic fuselage 
(S is its centre of mass), (2) an elastic main undercarriage, (3) an elastic nose undercarriage, (4) rigid 
main undercarriage wheels, (5) rigid nose undercarriage wheels. For the shock absorbers it will be 
assumed that their bending deformation is homogeneous over the variable length, which means that 
the two components of the absorber do not bend in a different way. This turns out to be a sufficient 
approximation. 

During operation we have to consider various continuous and discontinuous non-linearities. They 
tyres possess a stiffness characteristic which increases progressively with the tyre deformation. Moreover, 
the spin-up process of the wheels is governed by a highly non-linear friction-slippage relationship. The 

Fig. 7 
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shock absorber itself reveals some non-linear features. The two gas chambers follow a polytropic 
compression and expansion law, the fluid flow losses induce a quadratic damping behaviour, and the 
friction forces from the ground reaction forces are non-linear also. 

Discontinuous non-linearities arise but to the presence of upper and lower stops within the shock 
absorber and through stick-slip processes between the two shock absorber cylinders. The various 
discontinuities in the overall system would have required more than 40 different sets of equations of 
motion, which was not feasible. At present an algorithm for the systematic and automatic generation 
of these equations has been developed, based mainly on the properties of the constraint matrices W 
(see Section 3 below and [9]). The results agree well with practical experience. 

5. Awemblyprocesses. Mating different parts together involves various and sometimes quickly changing 
combinations of impacts with and without friction, of stick-slip processes and even of jamming. As these 
combinations and the transitions between them cannot be predicted in advance, because they depend 
on the current state of the system, we need a theory which can deal with such processes. It was this 
problem that led to the development of the methods of complementarity, sub-differentials and convex 
analysis [9, 12, 201. 

The practical application of these methods to some extent, abstract theories usually operates on 
different levels: the transition between contact configurations is either indicated by magnitudes of relative 
kinematics (at the beginning) or by those of constraint forces (at the end). The relative kinematical 
magnitudes undergo a metamorphosis from indicators to constraint equations as components of the 
constraint matrices, valid for the new contact configuration. The transition itself is governed by the 
principle of complementarity of the kinematic characteristics constraint forces: if one group vanishes, 
the other does not. Considerations of this kind in combination with the accompanying mathematics 
[4, 91 allow of efficient modelling of the assembly processes. As an example we take the operation of 
inserting a peg into a hole, performed by a manipulator [21,22]. 

A robot manipulator is usually considered as a tree-like multibody system with rigid and elastic 
components. Links are very often modelled as rigid bodies and only for special tasks as elastic bodies. 
Joints may ideally follow a given torque law, or they may be elastic with their own degrees of freedom 
(see Fig. 8). Therefore, we may subdivide our total number Iz of degrees of freedom into motor or internal 
degrees of freedom (Q,), external ones (nA), and elastic ones (nc). The equations of motion are then 
derived by applying Jourdain’s principle which says that constraint forces at the joints are perpendicular 
to the direction of motion and do not affect the power. 

Because most mating tasks in assembly cells are limited to a small area of workpiece interaction, the 
robot motion will be slow and centrifugal and Coriolis forces can henceforth be neglected compared 
to gravitational and inertia forces. Hence, the robot dynamics can be linearized around a given system 
state. During assembly the workpiece held by the robot comes into various contact situations with the 
complementary mating part. This is illustrated in Fig. 8 for a planar peg-in-hole insertion task. Here 
the following notation is used: 1 is the arm, 2 is the motor, 3 is the gear model, 4 is the compliance 
element, and 5 is the gripper. In this process one or more contacts may arise which constrains the gripper 
motion and thus the robot’s mobility by closing the kinematic loop of the manipulator. 

Experimental investigations have focused on a verifying of the theory for various configurations of 
assembly processes and on a considering perturbations during the peg-in-hole insertion. We will first 

Fig. 8 
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consider the perturbed motion during a planar peg-in-hole insertion task where forces only develop in 
the presence of uncertainties. To verify our theoretical approach, experiments with a five-degree-of- 
freedom laboratory robot with a force-torque sensor were carried out. The fixture housing the com- 
plementary part is equipped with six distance sensors that measure the gripper’s position and orientation 
and in addition disposes of two translational and three rotational adjustments which enable definite 
positioning errors to be produced with respect to the parts that are to be mated. 

In one experiment we investigated the insertion process when there was a lateral error between the 
peg and the hole. The respective numerical results (on the right) and experimental results (on the left) 
are shown in Fig. 9, where t is time and Fx is the insertion force during assembly due to lateral offset. 
The peaks in the force history at t = 0.9 s result from the impact when the peg hits the chamfer. When 
two-point-contact occurs at t = 1.2 s, the manipulator’s motion is slowed down very rapidly until a 
jamming condition is reached. Only when the controller torques become large enough, does the motion 
continue with sliding at two and finally even at one contact point. The cycle represented by the oscillations 
in the force history repeats until the end of the trajectory and demonstrates the phenomenon of changing 
constraints during an assembly operation. 

3. MATHEMATICAL FORMULATION 

Consider a system of rigid bodies with n, frictional contacts. The maximum number of degrees of 
freedomfis obtained when none of the contacts is closed. In this state the system may be described by 
a set of generalized coordinates q E Rf, and the equations of motion take the form 

Mij-h-2 (wNihNi +W,hT.=O (3-I) 
i=I 

Here, M is a symmetric and positive-definite mass matrix, h contains the gyroscopic: accelerations and 
the single-valued applied forces, and the sum relates to the contact forces. For each pair of contact 
points i we take an orthogonal system (n, u, v) such that n becomes the common normal to the surfaces 
of the contacting bodies and (u, v) specify two orthogonal directions in the tangent contact plane. The 
triple (n, U, v) then defines three connections for the generalized forces wN and WT = (IV”, wv) in the 
configuration space, and AN together with A; = (Au, hV) are underline to be the scalar values of the 
normal and the two tangential projections of the contact forces, respectively. 

The kinematic state of a contact is determined by the distance gN(q, t) between the contacting, bodies 
by the relative velocities (&, &, &) of the contact points in the three directions (n, u, v) and by their 
time derivatives Cgnr, gb, &). A straightforward evaluation of the contact kinematics yields [19,21]. 

2Ni =w;fj+~Np &j = w;4+;q (3.2) 

with the same WN, WT as used in (3.1) 
In (3.2) gN is the distance between the contacting bodies, & describes the relative velocity of the 

contact points in the normal direction and & = (gv, &)z is the tangential relative velocity, which also 
determines the sliding direction of the contact points in the common tangent plane relative to each 
other. Differentiating (3.2) with respect to the time we obtain 

Fv. N 

(3.3) 

Fig. 9 
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with ~N = ~/'~ - ~'N and ~ r  = r0rrq + r~r. This equation is needed to formulate the frictional contact 
laws on the acceleration level, in the same way as when reducing the index of a differential algebraic 
mechanical systems from 3 to 1. 

Generally, every force occurring in a rigid multibody system may be expressed in terms of some relative 
kinematic magnitudes such as the relative displacements and velocities. Classical applied forces are 
represented by continuous functions whereas classical bilateral constraints already require a 
representation via set-valued mappings. Contact laws, as used below, belong to the latter class and 
constitute mixed-type force characteristics, acting in some areas as classical applied forces and in other 
areas as constraints. 

Suppose gN/is the distance between the contact points and hlVi is the corresponding normal force. 
We may then express the non-deformability of rigid bodies by the Signorini-Fichera: condition 
[3-6, 12] 

gN~ ~> 0, ~'N~ ~> 0, gN~'N~ = 0 (3.4) 

which can be combined, for example, with Coulomb friction in the tangential directions [2-4, 6], i.e. 

(3.5) 
~'T/ -'~ -'~ig~- ' C~i > 0, }~Oi = ~ i (0 )  

where ~i(gri) denotes the coefficient of  friction at contact/. 
Following an approach developed in [9, 10, 12], we introduce the index sets 

I a =11,2 ... . .  ha} 

l c ( t )  = {i ~ I a I gNi = O, gN; ~> O} 
(3.6) 

I v ( t )  = {i e l c  I gNa = 0} 

I t ( t )  = {i e I N I g~ = 0} 

By using certain continuity assumptions on the trajectories q(t) can also express the contact laws (3.4), 
(3.5) on the acceleration level in order finally to solve Eqs (3.1) for the unknowns//'. This yields, for 
the contact law in the normal direction (3.4) 

~'N; = 0  for i ~ l  A \ !  v 

(3.7) 
gN~ ~ 0 ,  ~-~t~ ~>0, gN~;~.N~ = 0  for i ~ I  v 

The complementarity condition in the second line of (3.7) can also be expressed in the form of one 
of the following variational inequalities [3, 5, 6, 10] 

(3.8) 
i~lt¢ 

5"- (gN~ -/~N~ )XN~ ~ 0, gN~ ~ 0, gN~ ~ 0 
i~lN 

Similarly we obtain from (3.5) the friction law on the acceleration level in the form [10] 

X ~ = 0  for i ~ !  a \ i  v 

X L=-eil.t/~m~ for i a I  v ~ / r  

gr~ = 0 ~1 kr~ I ~ la0i~u,, gr~ ~ 0 ~1Xr, I = lx0ik~t~ 

(3.9) 

~'T/ = - a l g a ,  O~i > 0 ;  iE  IT 
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where ei is the unit vector in the sliding direction, i.e. ei = &J ]&i I. We recall: that, due to the assumed 
dependence on the normal forces, only quasivariational inequalities are allowable for the third portion 
of the contact law (3.9), which take the form [lo] 

Equations (3.1)-(3.3), (3.7) and (3.9) provide a complete description of impact-free non-smooth rigid 
body motion under the influence of Coulomb friction within the framework of non-smooth analysis. 
The equations considered above thus allow of further discussion and evaluation by applying available 
theoretical results and algorithms from this field [2-4,6]. Impacts have been excluded, but they can be 
treated in an analogous manner by rewriting (3.1) in measure space and solving it at the impact times 
121. This yields, together with appropriate impact laws, a set of relations similar to those considered 
above, in which the momenta play the role of forces, and the accelerations are expressed by velocity 
jumps [9, 12,131 

4. CONCLUSIONS 

In the theory of multibody systems with unilateral contacts the methodology has reached a state, which 
enables to be applied in nearly all fields of mechanical engineering. Since unilateral contacts occur very 
often in machines and mechanisms, the use of the appropriate theories is pending. This paper gives 
some examples which demonstrate the typical features of unilateral constraints in combination with 
machines, e.g. they may ensure certain functional behaviour like the transportation rate in vibratory 
feeders, or they might generate undesirable vibrations, noise and wear like rattling in gears or wear in 
chains. 

The main difficulties limiting applications today are of a numerical nature. To describe a machine 
like the vibration conveyor requires tedious numerical evaluations for solving the complementarity 
problem at each time step. Even with modern high-speed computers severe computing time problem 
arises. At present there are three groups of algorithms available suitable for calculations. 

First, there are methods which try to find a solution by a kind of intelligent trial and error procedure. 
They are unsatisfactory. The pivot-algorithms are related to the well- known simplex-algorithm. The 
Lemke method is an example. It can be used with some success, but requires large computing times. 
Within the framework of iterative methods, a modified Newton approach seems to be very promising, 
even for the non-linear complementarity problem. It is being developed at the present time. 

A second problem, also closely related to numerical calculations consists in the solution of non-linear 
complementarities, which arise when considering spatial unilateral contacts. Up to now we have used 
the following methods: linearization of the friction cones, augmented Lagrangian methods and NCP- 
functions, which visor in Mangasarian’s theorem. All these methods work satisfactorily, but all need 
improvement, or at least must be developed. We are also working on this. 
We note, in conclusion that the theories and methods available today help engineers to understand much 
better problems with unilateral contacts, which formerly were treated only in a very simple way. We 
are now able to analyse mechanisms with unilateral contacts in a way which, 5 years ago, could not even 
have been thought of. 
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